Efficient Asynchronous Byzantine Lattice ² **Agreement with Optimal Resilience**

Jane Open Access ⊠ A **D**

⁴ Dummy University Computing Laboratory, [optional: Address], Country

⁵ My second affiliation, Country

- $_{\circ}\,$ Joan R. Public 1 \boxtimes
- ⁷ Department of Informatics, Dummy College, [optional: Address], Country

- Abstract

- ⁹ Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent convallis orci arcu, eu mollis dolor.
- ¹⁰ Aliquam eleifend suscipit lacinia. Maecenas quam mi, porta ut lacinia sed, convallis ac dui. Lorem
- ¹¹ ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse potenti.
- ¹² **2012 ACM Subject Classification** Replace ccsdesc macro with valid one
- ¹³ **Keywords and phrases** Lattice agreement, Byzantine failures, Distributed algorithm, Message-passing ¹⁴ systems
- ¹⁵ **Digital Object Identifier** [10.4230/LIPIcs.CVIT.2016.23](https://doi.org/10.4230/LIPIcs.CVIT.2016.23)
- ¹⁶ **Funding** *Jane Open Access*: (Optional) author-specific funding acknowledgements
- ¹⁷ *Joan R. Public*: [funding]
- ¹⁸ **Acknowledgements** I want to thank . . .

¹⁹ **1 Introduction**

²⁰ **2 Related work**

²¹ Table [1](#page-0-0) summarizes the latest findings on lattice agreement in message passing systems ²² particularly highlighting the global message complexity.

Table 1 Related Work

© Jane Open Access and Joan R. Public; licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).

Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:11

 $^{\rm 1}$ Optional footnote, e.g. to mark corresponding author

[Leibniz International Proceedings in Informatics](https://www.dagstuhl.de/lipics/)

23:2 Efficient Asynchronous Byzantine Lattice Agreement with Optimal Resilience

²³ **3 Model and Definitions**

²⁴ We assume a distributed asynchronous message passing system with n processes with unique ²⁵ ids in $[p_1, p_2, ..., p_n]$. The communication graph is a clique, i.e., each process can send messages ²⁶ to any other process in the system (including itself). We assume that the communication ²⁷ channel between any two processes is reliable (no loss, corruption or creation of messages). ²⁸ There is no upper bound on message delay. We assume that processes can have Byzantine ²⁹ failures but at most $\frac{n}{3}$ processes can be Byzantine in any execution of the algorithm. We say ³⁰ a process is correct or non-faulty if it is not a Byzantine process.

³¹ In the following section, we recall the definition of the BLA problem that we are using.

³² **4 The Byzantine Lattice Agreement Problem**

Let *E* be a lattice of values that can be proposed by a process. Each process $p_i, i \in [n]$ has ³⁴ input x_i from a join semi-lattice (X, \leq, \sqcup) with X being the set of elements in the lattice E , ³⁵ ≤ being the partial order defined on *X*, and ⊔ being the join operation. Each process *pⁱ* has 36 to output some $y_i \in X$ such that the following properties are satisfied. Let C denote the set ³⁷ of correct processes in the system.

- **Comparability**: For all $i \in C$ and $j \in C$, either $y_i \leq y_j$ or $y_j \leq y_i$.
- **Downward-Validity**: For all $i \in C$, $x_i \leq y_i$.
- U **EVE 10 Upward-Validity**: $\sqcup \{y_i \mid i \in C\} \leq \sqcup (\{x_i \mid i \in C\} \cup B)$, where $B \subseteq E$ and $|B| \leq f$.
- 41

⁴² **4.1 The main algorithm**

 In this section, we present our algorithm to solve the BLA. The main algorithm remains similar to that of Zheng et al.[\[6\]](#page-10-4). Initially, each process makes its value known to at least $n-f$ processes and then collects the values from at least $n-f$ distinct processes, including its own. With this set of size at least *n* − *f*, each process can execute the classifier for log *f* rounds, which will enable it to decide. The main challenges encountered are in defining a classifier that can meet these requirements in the presence of Byzantine faults, as cited in [\[6\]](#page-10-4). For this, we use the classifier algorithm as proposed by Attiya et al. and simulate an SWMR $_{50}$ register ([\[4\]](#page-10-7)) which ensures the three desired properties.

Algorithm 1 Algorithm for the BLA Problem with *O*(log *f*) Rounds

Input: x_i : input value, $\ell_i = n - \frac{f}{2}$: initial label **Output:** y_i : output value **1** REG[*i*].write $(x_i, 0, 0)$; // Initial step $2 V_i^1 \leftarrow \text{REG.collect}(0);$ // Initial step **3 for** $r := 1$ **to** log f **do** $4 \mid (V_i^{r+1}, class) \leftarrow Classifier(V_i^r, \ell_i, r);$ **⁵ if** *class* = *master* **then 6** $\left| \quad \right| \quad \ell_i \leftarrow \ell_i + \frac{f}{2^{r+1}};$ **⁷ else 8** $| \cdot | \ell_i \leftarrow \ell_i - \frac{f}{2^{r+1}};$ **9** y_i ← ⊔{ $v \in V_i^{\log f + 1}$ }; 51

⁵² **4.1.1 The classifier procedure**

⁵³ We do the same as the classifier algorithm presented in , except for lines [3](#page-2-0) and [6](#page-2-1) where we

₅₄ perform a sorting operation that consists of extracting the values with the correct label (label

```
55 of process that performs the classification).
```


⁵⁷ **4.1.2 SWMR for BLA**

56

 The classifier calls our SWMR register for BLA (BLASWMR) algorithm, which we present here. In the BLASWMR, we construct a register for each round and use reliable broadcasts to ensure message reliability. In addition to the initial properties of RB, we assume that in our case, it includes a sequencer that ensures at most one write message can be R_delivered. 62 This BLASWR is inspired by the work of [\[4\]](#page-10-7).

⁶³ **The R_broadcast specifications:**

- 64 RB-Validity. If a correct process r-delivers a pair $(v, -, r, \text{csn})$ from a correct process p_x , 65 then p_x invoked the operation $R_broadcastWRITE_DONE(v, -, r, csn)$.
- $66 \equiv \text{RB-Integrity}$. Given any process p_i and any sequence number r, a correct process r-delivers at most once a $(v, -, r, \text{csn})$ from p_i .
- 68 RB-Uniformity. If a correct process r-delivers a pair $(v, -, r, \text{csn})$ from p_i (possibly faulty),
- then all the correct processes eventually r-deliver the same $(v, -, r, \text{csn})$ from p_i .
- ⁷⁰ RB-Termination. If the process that invokes *R*_*broadcast*(*v,* −*, r, csn*) is correct, all the ⁷¹ correct processes eventually r-deliver (*v,* −*, r, csn*).

⁷² **4.1.3 The valid condition**

```
73 The predicate allows verifying if a process has the right to write a value V at a given round.
\tau^4 = F0 condition for (r = 0). It check if the value proposed by p_j is an element of the lattice
75 E.
```
 τ_6 = F1 condition for $(r = 1)$. It checks if the size of |*V*| is at least $n - f$, then verifies if at ⁷⁷ least *n* − 2*f* different processes claim that *pⁱ* completed its collect operation in round $r = 0$ and that *V* is the value that it computed according to their responses to the collect. \overline{r} = F2 ($r > 1$). The first part ensures that the process claiming to be a slave has correctly

- ⁸⁰ updated its label and tries to write the same value as in the previous round. Additionally,
- at least $n-2f$ processes claimed that p_j read less or equal to *l'* values (values with label
- ⁸² l' during the collect operation.

```
Algorithm 3 BLA SWRM for pi
    \bm{\mathrm{Var}} initialisation : Map reg_i:reg_i[r][1..n]:=[\bot,\dots,\bot];csn_i := 0 the collect number;
                             known\_csn_i[1..n] := [0, \ldots, 0];
                             collect\_responses_i[c][k][j] value claimed to have been sent
                             with the collect number c by process p_k to p_j.
 1 Operation \text{REG}[i].write(V, \ell, r):
 2 R broadcast WRITE (V, \ell, r, csn<sub>i</sub>);
 3 Wait until WRITE_DONE(r) received from at least n − f different processes;
 4 return ();
 5 Operation REG.collect(r):
 6 \Big| \quad csn_i := csn_i + 1;7 Broadcast COLLECT(csni
, r);
 8 Wait until(∃reg: COLLECT_VALUE(known_csn, reg) is R_delivered from at
         least n - f different processes with known\_csn[i] = csn_i;
 9 return reg;
10 When a message WRITE(V, l, r, csn) from p_j is R_delivered:
11 Wait until valid(j, V, l, r, csn) ; // Unlock when the condition valid()
         becomes True
12 reg_i[r][j] := (V, l);[r][j] := (V, l); // add value and it label
13 send WRITE_DONE(r) to p_j;
14 R_broadcast COLLECT_VALUE(known\_csn_i, reg_i[r]);
15 When a message COLLECT(csn, r) from p_i is received:
16 if (r = 0) then
\textbf{17} \vert \quad \vert Wait \text{until}[\{k \mid reg_i[0][k] \neq \bot \}] \geq n-f; // wait \text{until} at least n-fdifferent process have written before responding to the collect
             of round 0
\textbf{18} if (know n\_csn_i[j] < csn) then
\blacksquare b \blacksquare 
20 | R_broadcast COLLECT_VALUE(known\_csn_i, reg_i[r]);
21 When a message COLLECT_VALUE(known csn, reg) from p_k is R_delivered:
22 for j in [1, n] do
23 \vert c := known \ csn[i];24 collect_responses[c][k][j].append(reg); // add all reg that pk claims
             to have sent to p_j with collect number c = known\_csn[j]
```
 \mathbb{F}^3 \blacksquare F3 ($r > 1$). This formula ensures that the process claiming to be a master has correctly updated its label and if at least $n - 2f$ processes claim that p_j read more than *l'* values ⁸⁵ (values with label *l'*) during the collect operation.

1 Predicate valid (j, V, l, r, csn) for p_i is:

⁸⁶ **4.2 Proof of the algorithm**

⁸⁷ First and foremost, we start with demonstrating the following property.

88 **► Property 4.1.** *Let* $n > 5f$ *. Any two sets of processes* Q_1 *and* Q_2 *of size at least* $n - 2f$ ⁸⁹ *have at least one correct process in their intersection.*

90 **Proof.** ■ $Q_1 \cup Q_2 \subseteq \{p_1, \ldots, p_n\}$. Hence, $|Q_1 \cup Q_2| \leq n$. $|Q_1| = |Q_1 \cap Q_2| = |Q_1| + |Q_2| - |Q_1 \cup Q_2| \geq |Q_1| + |Q_2| - n$. Hence, $|Q_1 \cap Q_2| \geq n - 4f$, from which it follows that $Q_1 \cap Q_2$ contains at least one correct process if and only if ⁹³ *n* − 4*f > f*. Thus *n >* 5*f*. 94

⁹⁵ ▶ **Definition 1** (group)**.** *A group is a set of processes which have the same label. The label of* ⁹⁶ *a group is the label of the processes in this group. The label of a group is also the threshold* ⁹⁷ *value processes in this group use to do classification.*

⁹⁸ ▶ **Definition 2** (commit)**.** *A write message that is reliable broadcast by a process is said to be* ⁹⁹ **committed** *if it satisfies the valid condition at one correct process at least.*

¹⁰⁰ ▶ **Definition 3** (admissible values for a group)**.** *The admissible values for a group G with label* ¹⁰¹ *ℓ is the set of values that can be committed with label ℓ.*

23:6 Efficient Asynchronous Byzantine Lattice Agreement with Optimal Resilience

Table 2 Notations

Let $s(\ell, r) = \ell - \frac{f}{2^{r+1}}$ and $m(\ell, r) = \ell + \frac{f}{2^{r+1}}$. Table. [2](#page-5-0) show the definition of some ¹⁰³ variables used in the proof.

¹⁰⁴ ▶ **Lemma 4.** *Let n >* 3*f.* ∀*pⁱ* ∈ *C, If pⁱ completes a collect at round r and return reg then* $reg[i] = (V, l)$ where (V, l) *is the input of* p_i *write in round r*.

Proof. Since p_i ended its write step before the collect, there exist at least $n - f$ different 107 processes that send WRITE_DONE (r) to p_i thus at least $n-2f$ correct processes (let denote ¹⁰⁸ by Q_1 the set of this processes) have executed Line [12](#page-3-0) such that $\forall p_k \in Q_1, reg_k[r][j] = (V, l)$ before sending $\text{WRITE_DONE}(r)$ to p_i . Since $n > 3f$, at least one correct process of Q_1 110 will intersect the $n-f$ (let denote by Q_2 the set of this processes)that sends the same *reg* 111 (Line [20](#page-3-1) or [14\)](#page-3-2) to p_i during the collect. Thus $\forall p_i \in C, reg[i] = (V, l)$.

¹¹² Proof of |*Q*¹ ∩ *Q*2| ≥ 1 if *n >* 3*f*.

113 We have that $|Q_1| \ge n - 2f$, $|Q_2| \ge n - f$ and $|Q_1 \cup Q_2| \le n$.

$$
|Q_1 \cap Q_2| = |Q_1| + |Q_2| - |Q_1 \cup Q_2|
$$

115 $\geq Q_1 + |Q_2| - n$

$$
2n - 3f \ge 1 \text{ if } n > 3f
$$

117 Thus $|Q_1 \cap Q_2| \geq 1$ if $n > 3f$. 118

 ▶ **Lemma 5.** *Let n >* 3*f. Let pⁱ* ∈ *C be a process that executes the two collect operations* $\frac{1}{200}$ *(Line [2](#page-2-2) and Line [5](#page-2-3) of Algorithm [3\)](#page-3-3)* for the same round $r > 0$. If p_i is correct then $\bigcup \{v \text{ such that } v \in \mathbb{R}^n\}$ *that* ∀*l,*(*v, l*) ∈ *collect_i*} ⊆ ∪{*v, such that* ∀*l,*(*v, l*) ∈*M_collect_i*}*, where collect_i is the result of the collect of the Line [2](#page-2-2) and M_collect_i the result of line [5.](#page-2-3)*

¹²³ **Proof.** (a.) We have assumed that the Reliable Broadcast includes a sequencer that ensures 124 at most one write message can be R_delivered in each round. Thus $\forall p_i \in C, p_i$ performs line [12](#page-3-0) (of algorithm [3\)](#page-3-3) at most one time per process $(reg_i[r][j] := (V, l), \forall p_j \in [1, \ldots, n]$. $Hence, \forall p_i \in C \text{ if collect_i} = reg_i[r] \text{ in time } t_1 \text{ and } M_collect_i = reg_i[r] \text{ in time } t_2, t_1 < t_2$ 127 then $\cup \{v \text{ such that } \forall l, (v, l) \in \text{collect}_i\} \subseteq \cup \{v, \text{ such that } \forall l, (v, l) \in M_collect_i\}.$

¹²⁸ (b.) The operation REG.collect(−) terminated implies that at least *n* − *f* processes send the 129 same *reg* to p_i (line [8](#page-3-4) of algorithm [3\)](#page-3-3). Let denote by Q_1 (respectively Q_2) the set of $n - f$ different processes that send collect_i (M_collect_i) to p_i . Since $n > 3f$, $|Q_1 \cap Q_2| \ge f + 1$ $_{131}$ thus there exists at least one correct process that intersects Q_1 and Q_2 . By (a.), we conclude ¹³² ∪{*v* such that ∀*l,*(*v, l*) ∈ collect_i} ⊆ ∪{*v,* such that ∀*l,*(*v, l*) ∈ M_collect_i}. This end the ¹³³ proof.

135 **Elemma 6.** Let $p_j \in C$. If p_j executed REG.collect(r) with collect number csn then, $e^{i\omega t}$ *eventually,* ∀ $p_i \in C, reg \in collect_responses_i[csn][k][j], ∀p_k \in Q$; where reg is the return of p_j 's collect and Q is the set of at least $n - f$ different processes that send (using the Reliable h_{138} *broadcast)* the same reg to p_j during the collect.

Proof. $p_j \in C$ ended its collect implies that at least $n - f$ different processes (denoted by 140 Q_1) send him the same *reg* (Using the Reliable Broadcast). Hence, all $p_k \in Q_1$ had performe ¹⁴¹ Line [14](#page-3-2) or [20](#page-3-1) (R_broadcast COLLECT_VALUE(*known*_*csn, reg*)). Thus eventually, all 142 correct processes $(p_i \in C)$ will receive this Reliable broadcast (from $p_k \in Q_1$) and perform ¹⁴³ Line [24](#page-3-5)

144 (*collect* responses $[ssn][k][j]$ *.append*(*reg*)) where $csn = known \ csn[j]$ which concludes the $_{145}$ proof.

146 ► Lemma 7. Let $n > 3f$, $p_j \in C$. If p_j performs R_broadcast(V, l, r, csn_j) (Line [2](#page-3-6) of algo 147 *4)* then the predicate $valid(j, V, \ell, r, csn)$ will eventually be true at $p_i \,\forall p_i \in C$ and $\forall r \geq 0$.

Proof. To prove that **valid()** is true is equivalent to prove that $A \wedge (F1 \vee F2 \vee F3) \vee F0$ 149 will be True for all $p_i \in C$.

First, we prove $A := (reg_i[r-1][j] \neq \bot) \,\forall r \geq 1.$

151 Because $p_j \in C$ it ended its write of round $r-1$ before performs $R_broadcast(V, l, r, csn_i)$. 152 Due to the RB-Termination of the Reliable Broadcast, $\forall p_i \in C, p_i$ will eventually receive ¹⁵³ V_j^{r-1} (send by p_j during the round $r-1$) and p_i will execute line [12](#page-3-0) then $reg_i[r-1][j] \neq \perp$ ¹⁵⁴ becomes True.

155 Subsequently, we prove the conditions Fi , $0 \le i \le 3$. The condition $F0$ is verified during ¹⁵⁶ the initial round $(r = 0)$, and the condition F1 is verified only in round $r = 1$, more precisely ¹⁵⁷ during the first classification round. *F*2 and *F*3 are used if $r > 1$.

158 **Case** $r = 0$: Since p_j is correct and use the Reliable Broadcast (Line [2\)](#page-3-6) to send its value V in round 0, all correct processes will receive the same value V (due to RB-Uniformity) 160 and $V \in E$ (Because $V = x_i \in E$ for all $p_i \in C$). Thus $F0 := (r = 0) \wedge (V \in E)$ will become 161 True for all $p_i \in C$.

162 **Case** $r = 1$: We need to prove $F1$ will eventually be True.

 $F1 := (r = 1) \wedge (|V| \geq n - f) \wedge (\exists reg \text{ such that } Admissible(j, reg, V', csn) = V)$

164 **■** Let prove that $|V| \ge n - f$ is True

165 Because $p_j \in C$ it ended its collect of round 0. p_j ended its collect of round 0 thus there exist at least $n-2f$ different correct processes (Q) that send the same *reg* to p_j in round 0 after passing the line [17](#page-3-7) i.e $\forall p_i \in Q, |\{k | reg_i[0][k] \neq \bot\}| \geq n - f$. Thus $|V| \geq n - f$

168 where, $V = \bigcup \{v, (v, 0) \in reg\}.$

 L_{169} **■** Let prove (∃*reg* such that $Admissible(j, reg, V', csn) = V$) will eventually be True at every correct processes *pⁱ* ¹⁷⁰ .

171 Since p_j is correct and ended its collect of round 0, it's clear that p_j had received via the reliable broadcast the same reg from at least $n-f$ different processes. Thus every correct process will eventually (due to the reliable broadcast) receive the same *reg* and performs the line [24](#page-3-5) (append *reg* to its collect_responses[*csn^j*][−][*j*]).(Each correct process can compute the Admissible condition easly) This conclude the proof.

Case $r > 1$: We need to prove that $F2 \vee F3$ becomes True for all $p_i \in C$ if p_j is a correct ¹⁷⁷ process.

 $_{178}$ We give the proof of $F2$ first

*f*² := (*r* > 1) ∧ $(l = l' - \frac{f}{2^r})$ ∧ (*V* = *V'*) ∧

180 $\left(\exists reg \text{ such that } |\hat{A}dmissible(j,reg, V',csn)| \leq l' \right).$

23:8 Efficient Asynchronous Byzantine Lattice Agreement with Optimal Resilience

- 181 Let $p_j \in C$ executing R $broadcast(V, l, r, can_j)$, $(r > 1)$. It's clear that p_j ended the
- rounds $r' < r$ in particular round $r 1$ collect operations.
- $\text{If } p_j \text{ has executed the ligne 9 of the classifier, then it has execute the ligne 8 (of algo 2).}$ $\text{If } p_j \text{ has executed the ligne 9 of the classifier, then it has execute the ligne 8 (of algo 2).}$ $\text{If } p_j \text{ has executed the ligne 9 of the classifier, then it has execute the ligne 8 (of algo 2).}$ $\text{If } p_j \text{ has executed the ligne 9 of the classifier, then it has execute the ligne 8 (of algo 2).}$ $\text{If } p_j \text{ has executed the ligne 9 of the classifier, then it has execute the ligne 8 (of algo 2).}$ thus $(l = l' - \frac{f}{2^r}) = True$ and $V = V'$.
- 185 Due to the termination of this collect (collect of round $r 1$), there exist at least $n f$ processes that send the same *reg* to p_j such that $|\bigcup \{v_k | (v_k, \ell') \in reg\}| \leq l'$ (Line [4](#page-2-5) 187 of the classifier Algo [2\)](#page-2-6). Since at least $n - f$ processes execute Lines [14](#page-3-2) or [20](#page-3-1) (of Algo ¹⁸⁸ [3\)](#page-3-3), every correct process will eventually (due to the reliable broadcast) receive the same ¹⁸⁹ *reg* and performs the line [24](#page-3-5) (append *reg* to its collect_responses[*csn^j*][−][*j*]). Thus $|Admissible(j, reg, V', can)| \leq l'$ for all $p_i \in C$. This ends the proof for *F*2.

¹⁹¹ Proof for *F*3

- $F3 := (r > 1) \wedge (l = l' + \frac{f}{2^r}) \wedge (|V| > l') \wedge (\exists reg \text{ such that } X(j, reg, V', can) = V).$
- 193 Let $p_j \in C$ executing $R_broadcast(V, l, r, csn_j)$, $(r > 1)$. It's clear that p_j ended the rounds $r' < r$ in particular round $r - 1$ collect operations.
- ¹⁹⁵ If p_j has execute the ligne [7](#page-2-7) of the classifier, then it has execute the ligne [6](#page-1-1) (of algo 2) thus $(l = l' + \frac{f}{2^r}) = True$. In addition to that, Lines [4](#page-2-5) and [6](#page-2-1) (of the classifier, algo [2\)](#page-2-6) 197 and lemma [5](#page-5-1) implies that $|V| > l$.
- 198 Due to the termination of the last collect of the round $r 1$, there exist at least $n f$ processes that send the same *reg* to p_j such that $|\bigcup \{v_k | (v_k, \ell') \in reg\}| > l'$ (Line [4](#page-2-5) of the classifier Algo [2\)](#page-2-6). Since $p_i \in C$, by lemma [4](#page-5-2) and lemma [6,](#page-5-3) $Commitable(j, reg, V', can) =$ *True* at every correct process p_i . More than that, $V = \bigcup \{v, (v, l') \in reg\}$ thus ²⁰² "³*reg* such that $Admissible(j, reg, V', can) = V$ " will becomes True where $(V', l') =$ 203 $reg_i[r][j].$
- 204

205 • Lemma 8. (Write termination) Let $n > 3f$ (Due to the Reliable Broadcast). If p_i is correct ²⁰⁶ *and invokes REG*[*i*]*.write*()*, its invocation terminates.*

Proof. Let $p_i \in C$ performs $REG[i].write(-,-,r)$. Due to the RB-termination property of ²⁰⁸ the underlying reliable broadcast abstraction invoked by p_i at line [2,](#page-3-6) each correct process p_j ²⁰⁹ R-delivers the message write(−*,* −*, r,* −). By lemma [7,](#page-6-0) the predicate *valid*(−*,* −*,* −*, r,* −) will 210 eventually be True for p_j and p_j sends the message WRITE_DONE(*r*) to p_i (line [13\)](#page-3-8). As 211 there are at least $n - f$ correct processes, it follows that p_i cannot remain blocked forever at 212 line 3, and the write invocation terminates.

213 \blacktriangleright **Lemma 9.** (Collect termination) Let $n > 3f$. If p_j is correct and invokes REG.collect(), ²¹⁴ *its invocation terminates.*

Proof. The proof is by contradiction. Let us assume that a correct process p_j invokes ²¹⁶ *REG.collect*(−) and this invocation never terminates. This means that the predicate ²¹⁷ associated with the wait statement of line [8](#page-3-4) remains false forever, namely, ∄*reg* such that 218 the message COLLECT VALUE(*known* csn, reg) is received from at least $n - f$ different ²¹⁹ processes with the correct *csn*.

220 As p_j is correct, it broadcasts the request message COLLECT(*sn, r*) where $sn = csn_j$ ²²¹ (line [7\)](#page-3-9), and this message is received by all correct processes. Moreover, *sn* is the greatest 222 sequence number ever used by p_j to collect, and, due to the contradiction assumption, csn_j ²²³ keeps forever the value *sn*.

224 When a correct process p_k receives the message COLLECT(sn, r) from p_j , the predicate 225 *known_csn_k*[*j*] $\lt sn$ is satisfied (line [18\)](#page-3-10). This is because *sn* is greater than all previous 226 sequence numbers used by p_j to collect before. It follows that p_k updates $known_csn_k[j]$ to

 227 $sn = csn_i$, and broadcast COLLECT VALUE(*known* csn_k , reg_k[r_i]) (in particularly send ω_{228} to p_j (lines 19-[20\)](#page-3-1). Moreover, as the collect by p_j never terminates, *known_csn*_{*k*}[*j*] remains 229 forever equal to $sn = csn_j$.

230 As the predicate of line [8](#page-3-4) remains forever false at p_j , and p_j receives at least $(n - f)$ ²³¹ messages COLLECT(*known*_*csn, reg*) with *known*_*csn*[*j*] = *csn* (one from each correct pro- $_{232}$ cess), it follows that p_j receives at least two messages COLLECT VALUE(*known* csn, reg) and COLLECT_VALUE($known_csn', reg'$) such that $known_csn[j] = known_csn'[j]$ and $reg \neq reg'$.

²³⁵ Due to the RB-uniformity property of the underlying broadcast abstraction, it follows ²³⁶ that all the correct processes r-delivers the same write() messages from correct or byz- 237 antine processes. Let p_k be a correct process. It follows directly from the code of the 238 algorithm that, each time p_k adds a value to $reg_k[r][i]$ (line [12\)](#page-3-0), it broadcasts a mes-²³⁹ sage COLLECT_VALUE(−*, regk*[*r*]) (line [14\)](#page-3-2). It follows (by the write termination) that ²⁴⁰ there is a finite time after which p_j has received the very same *reg* contained in message ²⁴¹ COLLECT_VALUE(*known*_*csn, reg*) from at least *n* − *f* different processes (with the ²⁴² correct *known* $csn[j]$). The predicate of line [8](#page-3-4) becomes then satisfied. This contradicts the ²⁴³ initial assumption, and the lemma follows. 244

²⁴⁵ For lemma [10](#page-8-0) to lemma [15,](#page-9-0) let *G* be a group at round *r* ≥ 1 with label *ℓ*. Let *L* and *R* be two nonnegative integers such that $L < \ell \leq R$. If $L < |V_i^r| \leq R$ for each correct process ²⁴⁷ $p_i \in G$, and $|U_{\ell}^r| \leq R$

≥ Lemma 10. For each correct process p_i ∈ $master(G)$ and p_j ∈ $slave(G)$, ℓ < $|V_i^{r+1}|$ ≤ R \int_{249} and $L < |V_j^{r+1}| \leq \ell$.

250 **Proof.** Immediate from the classifier procedure.

251 \triangleright **Property 4.2.** *Suppose that process* p_i *(possibly Byzantine)* **commit** *(definition [2\)](#page-4-0) a write r*₂₅₂ *message* $(V_i, s(l, r), r + 1, -)$ *. Then at least* $n - f$ *different processes known* V_i *before* $p_i's$ ²⁵³ *collect at round r.*

Proof. Otherwise $\sharp n-f$ different processes s.t the condition Commitable() of valid (i, V_i, l, r, csn) ²⁵⁵ becomes True at round $r + 1$.

$$
256 \text{ ▶ Lemma 11. } |U_{s(\ell,r)}^{r+1}| \leq \ell
$$

Proof. Consider group $s(l, r)$ at round $r + 1$. We know that this group must be the slave ²⁵⁸ group of group *l* at round *r*. Let *P* denote the set of processes that can commit a write $\sum_{z \in S}$ message at round $r + 1$ with label $s(l, r)$. For each process $p_i \in P$, let $(V_i, s(l, r), r + 1, -)$ \mathcal{L}_{260} denote the message that is committed by process p_i . Then, $U_{r+1}^{s(l,r)} = \bigcup \{V_i \mid p_i \in P\}$. Let 261 denote by $p_j \in P$, the last process that received at least $n - f$ write done (line [3](#page-3-12) of Algo [3\)](#page-3-3). Let call by extract_{*i*}, the result of p_j collect (line [3](#page-2-0) of algo [2\)](#page-2-6). It's clear that $U_{r+1}^{s(l,r)} \subseteq$ 263 extract_*j*. Otherwise this implies that $\exists p_k \in P$ s.t $V_k \notin reg_l$ (where reg_l is the result of $_{264}$ line [8](#page-3-4) of algo [3,](#page-3-3) sent by at least $n-f$ different processes.) By property [4.2](#page-8-1) we not that at ²⁶⁵ least $|K_1|$ different processes known V_k . Let denote by K_2 the set of process that known V_i ; 266 $|K_1| \geq n - f$ and $|K_2| \geq n - f$. Hence there exist at least one correct process that intersect $_{267}$ *K*₁ and *K*₂ since $n > 3f$.

268 Due to the fact that there exist a correct process $p_h \in K_2$, it's clear that $|\text{extract}_j| \leq l$ thus $|U_{r+1}^{s(l,r)}| \leq l.$

 $_{270}$ ▶ Lemma 12. $|U^{r+1}_{m(\ell,r)}|$ ≤ R

23:10 Efficient Asynchronous Byzantine Lattice Agreement with Optimal Resilience

Proof. The value set that can be commit by each correct process for group $m(\ell, r)$ is the

 $_{272}$ union of values committed (reliably broadcast and valid) by processes in group ℓ at round r . $\text{Thus, } U_{m(\ell,r)}^{r+1} \subseteq U_{\ell}^r \implies |U_{m(\ell,r)}^{r+1}| \leq |U_{\ell}^r| \leq R.$

- $\text{Lemma 13. } | \cup \{V_i^{r+1} \mid p_i \in \textit{slave}(G) \cap C\}| \leq \ell$
- 275 **Proof.** Implied by lemma [11](#page-8-2)
- $\text{Lemma 14. } | \cup \{V_i^{r+1} \mid p_i \in master(G) \cap C\}| \leq R$
- 277 **Proof.** Implied by lemma [12](#page-8-3)
- ▶ **Lemma 15.** *For each correct process* p_j *∈* $master(G)$ *,* $U_{s(\ell,r)}^{r+1} \subseteq V_j^{r+1}$ 278

Proof. Let $p_i \in \text{slave}(G)$ and $p_j \in \text{master}(G)$. We know that there exist a set $Q_i(|Q_i| \geq n-f)$ 280 of processes that participated in the write of process p_i at round r . Let Q_j be the set of the 281 first *n* − *f* processes that participated in the second collect of p_j .

Since p_i is a slave at round *r*, it must completes its write before the second collect of p_j thermorphic contract $p_i \in \text{master}(G)$. This implies that $V_i^{r+1} = V_i^r$ is known by all $p_k \in Q_j$ before the second collect of p_j is completed. Therefore, there exists at least one correct process in $Q_i \cap Q_j$ ²⁸⁵ since $n > 3f$. Consequently, V_i^r will be included in the *reg* (COLLECT_VALUE(*T*, *reg*)) 286 returned by process in Q_j (otherwise the collect does not terminate - impossible by lemma [9\)](#page-7-0). Hence, $V_j^{r+1} = V_j^r \subseteq V_i^{r+1}$. We thus conclude that $U_{s(\ell,r)}^{r+1} \subseteq V_j^{r+1}$.

≥288 \blacktriangleright **Lemma 16.** For any correct process p_i and round r , V_i^r ⊆ V_i^{r+1} .

²⁸⁹ **Proof.** A slave process keeps its value set unchanged and a master process updates its value 290 set to be the set values which contains its own value set.

- **291** \blacktriangleright **Lemma 17.** Let G be a group of processes at round $r \geq 1$ with label ℓ . Then
- *(1) for each correct process* $i \in G$, $\ell \frac{f}{2^r} \leq |V_i^r| \leq \ell + \frac{f}{2^r}$
- 293 *(2)* $|U_{\ell}^{r}| \leq \ell + \frac{f}{2^{r}}$
- **Proof.** By induction on round number r and apply lemma [12,](#page-8-3) [11](#page-8-2) and [10](#page-8-0)
- 295 \blacktriangleright **Lemma 18.** Let p_i and p_j be two correct processes that are in the same group G with label ℓ *at the beginning of round* $\log f + 1$ *. Then* $V_i^{\log f + 1}$ *and* $V_j^{\log f + 1}$ *are equal.*
- **Proof.** Let G' be the parent of G with label ℓ' . Assume without loss of generality that $G = M(G')$. The proof for the case $G = S(G')$ follows in the same manner. Since G' is a ²⁹⁹ group at round $\log f$, by Lemma [17,](#page-9-1) we have:
- ³⁰⁰ (1) for each correct process $p \in G'$, $\ell' 1 < |V_p^{\log f}| \leq \ell' + 1$, and
- 301 $|U_{\ell'}^{\log f}| \leq \ell' + 1$

Since $p_i \in G'$ and $p_j \in G'$, (1) and (2) hold for both process p_i and p_j . By the assumption that $G = M(G')$, process p_i and p_j execute the *Classifier* procedure with label ℓ' and are both classified as *master*. Let $L = \ell' - 1$ and $R = \ell' + 1$, then by applying Lemma [10](#page-8-0) we have $\mathbb{E}_{\mathbb{E}_{\mathbb{E}_{\mathbb{E}}} s_{\ell}} \ell' < |V_i^{\log f + 1}| \leq \ell' + 1 \text{ and } \ell' < |V_j^{\log f + 1}| \leq \ell' + 1, \text{ thus } |V_i^{\log f + 1}| = |V_j^{\log f + 1}| = \ell' + 1.$ \mathbb{Z}_{306} Lemma [14,](#page-9-2) we have $|\cup \{V_i^{\log f+1}, V_j^{\log f+1}\}| \leq \ell' + 1$. Thus, $V_i^{\log f+1} = V_j^{\log f+1}$. Therefore, V_i^r and V_j^r are equal at the beginning of round log $f + 1$.

308 \blacktriangleright **Lemma 19.** *(Comparability) For any two correct process* p_i *and* p_j , y_i *and* y_j *are compar-*³⁰⁹ *able.*

Proof. If process p_i and *j* are in the same group at the beginning of round $\log f + 1$, then 311 by Lemma [18,](#page-9-3) $y_i = y_j$. Otherwise, let G be the last group that both p_i and p_j belong to. 312 Suppose *G* is a group with label ℓ at round *r*. Suppose $i \in slave(G)$ and $j \in master(G)$ \mathcal{L} is a suithout loss of generality. Then, $V_i^{\log f+1} \subseteq U_{s(\ell,r)}^{r+1} \subseteq V_j^{r+1} \subseteq V_j^{\log f+1}$, by Lemma [15](#page-9-0) \blacksquare

4.3 Message Complexity

 M essages are exchange only in the algorithm [3.](#page-3-3) A write operation costs $O(n^2)$ overall due to 316 R_broadcast. There are at most *n* writes per round, resulting in $O(n^3)$ messages per round. Δ_{317} Another costly line is line [14,](#page-3-2) which costs $O(n^3)$ messages per round per process, totaling ³¹⁸ $O(n^4)$ globally per round. A collect operation costs at most $O(n^2)$ per process and is called at most twice per round. In summary, the total number of messages is $O(n^4 + n^3 + n^2) = O(n^3)$ messages per round. Hence, our algorithm exchanges at $O(n^4 \log f)$ messages i.e $O(n^3 \log f)$ messages per process.

- **5 Conclusion**
-
- **6 Draft**

```
325 References
```
- **1** Hagit Attiya, Maurice Herlihy, and Ophir Rachman. Atomic snapshots using lattice agreement. *Distrib Comput*, 8(3):121–132, March 1995. [doi:10.1007/BF02242714](https://doi.org/10.1007/BF02242714).
- **2** Giuseppe Antonio Di Luna, Emmanuelle Anceaume, and Leonardo Querzoni. Byzantine generalized lattice agreement. In *2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)*, pages 674–683. IEEE, 2020.
- **3** Jose M. Faleiro, Sriram Rajamani, Kaushik Rajan, G. Ramalingam, and Kapil Vaswani. Generalized lattice agreement. In *Proceedings of the 2012 ACM symposium on Principles of distributed computing*, pages 125–134, Madeira Portugal, July 2012. ACM. URL: [https:](https://dl.acm.org/doi/10.1145/2332432.2332458) [//dl.acm.org/doi/10.1145/2332432.2332458](https://dl.acm.org/doi/10.1145/2332432.2332458), [doi:10.1145/2332432.2332458](https://doi.org/10.1145/2332432.2332458).
- **4** Damien Imbs, Sergio Rajsbaum, Michel Raynal, and Julien Stainer. Read/write shared memory abstraction on top of asynchronous Byzantine message-passing systems. *Journal of Parallel and Distributed Computing*, 93-94:1–9, July 2016. URL: [https://www.sciencedirect.com/](https://www.sciencedirect.com/science/article/pii/S074373151630003X) [science/article/pii/S074373151630003X](https://www.sciencedirect.com/science/article/pii/S074373151630003X), [doi:10.1016/j.jpdc.2016.03.012](https://doi.org/10.1016/j.jpdc.2016.03.012).
- **5** Xiong Zheng and Vijay Garg. Byzantine lattice agreement in synchronous message passing systems. In *34th International Symposium on Distributed Computing (DISC 2020)*. Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2020.
- **6** Xiong Zheng and Vijay Garg. Byzantine Lattice Agreement in Asynchronous Systems. In *DROPS-IDN/v2/document/10.4230/LIPIcs.OPODIS.2020.4*. Schloss Dagstuhl – Leibniz- Zentrum für Informatik, 2021. URL: [https://drops.dagstuhl.de/entities/document/10.](https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2020.4) [4230/LIPIcs.OPODIS.2020.4](https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2020.4), [doi:10.4230/LIPIcs.OPODIS.2020.4](https://doi.org/10.4230/LIPIcs.OPODIS.2020.4).
- **7** Xiong Zheng, Vijay K. Garg, and John Kaippallimalil. Linearizable Replicated State Machines with Lattice Agreement, October 2018. arXiv:1810.05871 [cs]. URL: [http://arxiv.org/abs/](http://arxiv.org/abs/1810.05871) [1810.05871](http://arxiv.org/abs/1810.05871), [doi:10.48550/arXiv.1810.05871](https://doi.org/10.48550/arXiv.1810.05871).
- **8** Xiong Zheng, Changyong Hu, and Vijay K. Garg. Lattice Agreement in Message Passing Systems. In *DROPS-IDN/v2/document/10.4230/LIPIcs.DISC.2018.41*. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. URL: [https://drops.dagstuhl.de/entities/](https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2018.41) [document/10.4230/LIPIcs.DISC.2018.41](https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2018.41), [doi:10.4230/LIPIcs.DISC.2018.41](https://doi.org/10.4230/LIPIcs.DISC.2018.41).