
Efficient Asynchronous Byzantine Lattice1

Agreement with Optimal Resilience2

Jane Open Access #Ñ3

Dummy University Computing Laboratory, [optional: Address], Country4

My second affiliation, Country5

Joan R. Public1 #6

Department of Informatics, Dummy College, [optional: Address], Country7

Abstract8

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent convallis orci arcu, eu mollis dolor.9

Aliquam eleifend suscipit lacinia. Maecenas quam mi, porta ut lacinia sed, convallis ac dui. Lorem10

ipsum dolor sit amet, consectetur adipiscing elit. Suspendisse potenti.11

2012 ACM Subject Classification Replace ccsdesc macro with valid one12

Keywords and phrases Lattice agreement, Byzantine failures, Distributed algorithm, Message-passing13

systems14

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2315

Funding Jane Open Access: (Optional) author-specific funding acknowledgements16

Joan R. Public: [funding]17

Acknowledgements I want to thank . . .18

1 Introduction19

2 Related work20

Table 1 summarizes the latest findings on lattice agreement in message passing systems21

particularly highlighting the global message complexity.22

Time
model

Failure
model Paper Rounds/Message delays Total

messages

Sy
nc

Byzan Zheng and Garg [5] O(log f), f < n
3 O(n2 log f)

Crash Attiya et al. [1] O(log n), f < n O(n2)
Crash Zheng et al. [8] O(log f), f < n O(n2 log f)

A
sy

nc

Byzan Us O(log f), f < n
3 O(n3 log f)

Byzan Di Luna et al. [2] O(f), f < n
3 O(n2)

Byzan Zheng and Garg [6] O(log f), f < n
5 O(n2 log f)

Crash Faleiro et al. [3] O(n), f < n
2 −

Crash Zheng et al. [8] O(f), f < n
2 O(n2f)

Crash Zheng et al. [7] O(log f), f < n
2 O(n2 log f)

Table 1 Related Work

1 Optional footnote, e.g. to mark corresponding author

© Jane Open Access and Joan R. Public;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:johnqpublic@dummyuni.org
http://www.myhomepage.edu
https://orcid.org/0000-0002-1825-0097
mailto:joanrpublic@dummycollege.org
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Efficient Asynchronous Byzantine Lattice Agreement with Optimal Resilience

3 Model and Definitions23

We assume a distributed asynchronous message passing system with n processes with unique24

ids in [p1, p2, ..., pn]. The communication graph is a clique, i.e., each process can send messages25

to any other process in the system (including itself). We assume that the communication26

channel between any two processes is reliable (no loss, corruption or creation of messages).27

There is no upper bound on message delay. We assume that processes can have Byzantine28

failures but at most n
3 processes can be Byzantine in any execution of the algorithm. We say29

a process is correct or non-faulty if it is not a Byzantine process.30

In the following section, we recall the definition of the BLA problem that we are using.31

4 The Byzantine Lattice Agreement Problem32

Let E be a lattice of values that can be proposed by a process. Each process pi, i ∈ [n] has33

input xi from a join semi-lattice (X,≤,⊔) with X being the set of elements in the lattice E,34

≤ being the partial order defined on X, and ⊔ being the join operation. Each process pi has35

to output some yi ∈ X such that the following properties are satisfied. Let C denote the set36

of correct processes in the system.37

Comparability: For all i ∈ C and j ∈ C, either yi ≤ yj or yj ≤ yi.38

Downward-Validity: For all i ∈ C, xi ≤ yi.39

Upward-Validity: ⊔{yi | i ∈ C} ≤ ⊔({xi | i ∈ C} ∪B), where B ⊆ E and |B| ≤ f .40

41

4.1 The main algorithm42

In this section, we present our algorithm to solve the BLA. The main algorithm remains43

similar to that of Zheng et al.[6]. Initially, each process makes its value known to at least44

n− f processes and then collects the values from at least n− f distinct processes, including45

its own. With this set of size at least n− f , each process can execute the classifier for log f46

rounds, which will enable it to decide. The main challenges encountered are in defining a47

classifier that can meet these requirements in the presence of Byzantine faults, as cited in [6].48

For this, we use the classifier algorithm as proposed by Attiya et al. and simulate an SWMR49

register ([4]) which ensures the three desired properties.50

Algorithm 1 Algorithm for the BLA Problem with O(log f) Rounds

Input: xi: input value, ℓi = n− f
2 : initial label

Output: yi: output value
1 REG[i].write(xi, 0, 0) ; // Initial step
2 V 1

i ← REG.collect(0) ; // Initial step
3 for r := 1 to log f do
4 (V r+1

i , class)← Classifier(V r
i , ℓi, r);

5 if class = master then
6 ℓi ← ℓi + f

2r+1 ;
7 else
8 ℓi ← ℓi − f

2r+1 ;
9 yi ← ⊔{v ∈ V log f+1

i };

51

J. Open Access and J. R. Public 23:3

4.1.1 The classifier procedure52

We do the same as the classifier algorithm presented in , except for lines 3 and 6 where we53

perform a sorting operation that consists of extracting the values with the correct label (label54

of process that performs the classification).55

Algorithm 2 Classifier (V, ℓ, r) for pi:

Input: V : input value set, ℓ: threshold value, r: round number
Output: (V ′, class): updated value set and class

1 REG[i].write(V, ℓ, r);
2 collect_i← REG.collect(r) ; // First collect
3 extract_i←

⋃
{vk | (vk, ℓ) ∈ collect_i};

4 if |extract_i| > ℓ then
5 M_collect_i← REG.collect(r) ; // Second collect
6 M_extract_i←

⋃
{vk | (vk, ℓ) ∈ M_collect_i};

7 return (M_extract_i, master);
8 else
9 return (V, slave);

56

4.1.2 SWMR for BLA57

The classifier calls our SWMR register for BLA (BLASWMR) algorithm, which we present58

here. In the BLASWMR, we construct a register for each round and use reliable broadcasts59

to ensure message reliability. In addition to the initial properties of RB, we assume that in60

our case, it includes a sequencer that ensures at most one write message can be R_delivered.61

This BLASWR is inspired by the work of [4].62

The R_broadcast specifications:63

RB-Validity. If a correct process r-delivers a pair (v,−, r, csn) from a correct process px,64

then px invoked the operation R_broadcastWRITE_DONE(v,−, r, csn).65

RB-Integrity. Given any process pi and any sequence number r, a correct process r-delivers66

at most once a (v,−, r, csn) from pi.67

RB-Uniformity. If a correct process r-delivers a pair (v,−, r, csn) from pi (possibly faulty),68

then all the correct processes eventually r-deliver the same (v,−, r, csn) from pi.69

RB-Termination. If the process that invokes R_broadcast(v,−, r, csn) is correct, all the70

correct processes eventually r-deliver (v,−, r, csn).71

4.1.3 The valid condition72

The predicate allows verifying if a process has the right to write a value V at a given round.73

F0 condition for (r = 0). It check if the value proposed by pj is an element of the lattice74

E.75

F1 condition for (r = 1). It checks if the size of |V | is at least n− f , then verifies if at76

least n − 2f different processes claim that pi completed its collect operation in round77

r = 0 and that V is the value that it computed according to their responses to the collect.78

F2 (r > 1). The first part ensures that the process claiming to be a slave has correctly79

updated its label and tries to write the same value as in the previous round. Additionally,80

at least n− 2f processes claimed that pj read less or equal to l′ values (values with label81

l′) during the collect operation.82

CVIT 2016

23:4 Efficient Asynchronous Byzantine Lattice Agreement with Optimal Resilience

Algorithm 3 BLA SWRM for pi

Var initialisation : Map regi : regi[r][1..n] := [⊥, . . . ,⊥];
csni := 0 the collect number;
known_csni[1..n] := [0, . . . , 0] ;
collect_responsesi[c][k][j] value claimed to have been sent
with the collect number c by process pk to pj .

1 Operation REG[i].write(V, ℓ, r):
2 R_broadcast WRITE (V, ℓ, r, csni);
3 Wait until WRITE_DONE(r) received from at least n− f different processes;
4 return ();
5 Operation REG.collect(r):
6 csni := csni + 1;
7 Broadcast COLLECT(csni, r);
8 Wait until(∃reg: COLLECT_VALUE(known_csn, reg) is R_delivered from at

least n− f different processes with known_csn[i] = csni);
9 return reg;

10 When a message WRITE(V, l, r, csn) from pj is R_delivered:
11 Wait until valid(j, V, l, r, csn) ; // Unlock when the condition valid()

becomes True
12 regi[r][j] := (V, l); // add value and it label
13 send WRITE_DONE(r) to pj ;
14 R_broadcast COLLECT_VALUE(known_csni, regi[r]);
15 When a message COLLECT(csn, r) from pj is received:
16 if (r = 0) then
17 Wait until|{k | regi[0][k] ̸= ⊥}| ≥ n− f ; // wait until at least n− f

different process have written before responding to the collect
of round 0

18 if (known_csni[j] < csn) then
19 known_csni[j] := csn;
20 R_broadcast COLLECT_VALUE(known_csni, regi[r]);
21 When a message COLLECT_VALUE(known_csn, reg) from pk is R_delivered:
22 for j in [1, n] do
23 c := known_csn[j];
24 collect_responses[c][k][j].append(reg); // add all reg that pk claims

to have sent to pj with collect number c = known_csn[j]

J. Open Access and J. R. Public 23:5

F3 (r > 1). This formula ensures that the process claiming to be a master has correctly83

updated its label and if at least n− 2f processes claim that pj read more than l′ values84

(values with label l′) during the collect operation.85

1 Predicate valid(j, V, l, r, csn) for pi is:
2 Let (V ′, l′) := regi[r − 1][j] ; // What pj write in pi memory in round r − 1
3 Let Commitable(j, reg, V ′, csn) = ∃K ⊆ [1, . . . , n], |K| = n− f, ∀k ∈ K,

collect_responses[csn][k][j] = reg AND (V ′, l′) = reg[j]; // True if n− f

different processes claim to have send reg (such that V ′ ∈ reg) to
pj with the collect number csn

4 Let Admissible(j, reg, V ′, csn) :=
⋃
{v | (v, l′) ∈

reg and Commitable(j, reg, V ′, csn) = True} ; // the set of value send by
at least n− f different processes with the label l′

5 Let A := (regi[r − 1][j] ̸= ⊥); // Check if pj has written in the previous
round it’s value, r ≥ 1

6 Let F0 := (r = 0) ∧ (V ∈ E); // ensure that the value proposed by a
process in the initial round is in the base lattice E

7 Let F1 := (r = 1) ∧ (|V | ≥ n− f)∧
(∃reg such that Admissible(j, reg, V ′, csn) = V); // Round 1 condition

8 Let F2 := (r > 1) ∧
(

l = l′ − f
2r

)
∧ (V = V ′)∧

(∃reg such that |Admissible(j, reg, V ′, csn)| ≤ l′); // Slave specifications
9 Let F3 := (r > 1) ∧ (l = l′ + f

2r) ∧ (|V | > l′)∧
(∃reg such that Admissible(j, reg, V ′, csn) = V); // Master specifications

10 A
∧

(F1
∨

F2
∨

F3)
∨

F0; // the main formula

4.2 Proof of the algorithm86

First and foremost, we start with demonstrating the following property.87

▶ Property 4.1. Let n > 5f . Any two sets of processes Q1 and Q2 of size at least n− 2f88

have at least one correct process in their intersection.89

Proof. Q1 ∪Q2 ⊆ {p1, . . . , pn}. Hence, |Q1 ∪Q2| ≤ n.90

|Q1 ∩ Q2| = |Q1| + |Q2| − |Q1 ∪ Q2| ≥ |Q1| + |Q2| − n. Hence, |Q1 ∩ Q2| ≥ n − 4f ,91

from which it follows that Q1 ∩ Q2 contains at least one correct process if and only if92

n− 4f > f . Thus n > 5f .93

◀94

▶ Definition 1 (group). A group is a set of processes which have the same label. The label of95

a group is the label of the processes in this group. The label of a group is also the threshold96

value processes in this group use to do classification.97

▶ Definition 2 (commit). A write message that is reliable broadcast by a process is said to be98

committed if it satisfies the valid condition at one correct process at least.99

▶ Definition 3 (admissible values for a group). The admissible values for a group G with label100

ℓ is the set of values that can be committed with label ℓ.101

CVIT 2016

23:6 Efficient Asynchronous Byzantine Lattice Agreement with Optimal Resilience

Variable Definition
G A group of processes at round r with label ℓ

slave(G) The slave subgroup of G, i.e., the processes with label s(ℓ, r) at round
r + 1

master(G) The master subgroup of G, i.e., the processes with label m(ℓ, r) at
round r + 1

V r
i The value set of process pi at the beginning of round r

Ur
ℓ The set of admissible values for group ℓ at round r

Table 2 Notations

Let s(ℓ, r) = ℓ − f
2r+1 and m(ℓ, r) = ℓ + f

2r+1 . Table. 2 show the definition of some102

variables used in the proof.103

▶ Lemma 4. Let n > 3f . ∀pi ∈ C, If pi completes a collect at round r and return reg then104

reg[i] = (V, l) where (V, l) is the input of pi write in round r.105

Proof. Since pi ended its write step before the collect, there exist at least n− f different106

processes that send WRITE_DONE(r) to pi thus at least n−2f correct processes (let denote107

by Q1 the set of this processes) have executed Line 12 such that ∀pk ∈ Q1, regk[r][j] = (V, l)108

before sending WRITE_DONE(r) to pi. Since n > 3f , at least one correct process of Q1109

will intersect the n− f (let denote by Q2 the set of this processes)that sends the same reg110

(Line 20 or 14) to pi during the collect. Thus ∀pi ∈ C, reg[i] = (V, l).111

Proof of |Q1 ∩Q2| ≥ 1 if n > 3f .112

We have that |Q1| ≥ n− 2f, |Q2| ≥ n− f and |Q1 ∪Q2| ≤ n.113

|Q1 ∩Q2| = |Q1|+ |Q2| − |Q1 ∪Q2|114

≥ Q1|+ |Q2| − n115

≥ n− 3f ≥ 1 if n > 3f116

Thus |Q1 ∩Q2| ≥ 1 if n > 3f .117

◀118

▶ Lemma 5. Let n > 3f . Let pi ∈ C be a process that executes the two collect operations119

(Line 2 and Line 5 of Algorithm 3) for the same round r > 0. If pi is correct then ∪{v such120

that ∀l, (v, l) ∈ collect_i} ⊆ ∪{v, such that ∀l, (v, l) ∈M_collect_i}, where collect_i is the121

result of the collect of the Line 2 and M_collect_i the result of line 5.122

Proof. (a.) We have assumed that the Reliable Broadcast includes a sequencer that ensures123

at most one write message can be R_delivered in each round. Thus ∀pi ∈ C, pi performs124

line 12 (of algorithm 3) at most one time per process (regi[r][j] := (V, l),∀pj ∈ [1, . . . , n]).125

Hence, ∀pi ∈ C if collect_i = regi[r] in time t1 and M_collect_i = regi[r] in time t2, t1 < t2126

then ∪{v such that ∀l, (v, l) ∈ collect_i} ⊆ ∪{v, such that ∀l, (v, l) ∈ M_collect_i}.127

(b.) The operation REG.collect(−) terminated implies that at least n− f processes send the128

same reg to pi (line 8 of algorithm 3). Let denote by Q1 (respectively Q2) the set of n− f129

different processes that send collect_i (M_collect_i) to pi. Since n > 3f , |Q1 ∩Q2| ≥ f + 1130

thus there exists at least one correct process that intersects Q1 and Q2. By (a.), we conclude131

∪{v such that ∀l, (v, l) ∈ collect_i} ⊆ ∪{v, such that ∀l, (v, l) ∈ M_collect_i}. This end the132

proof.133

◀134

J. Open Access and J. R. Public 23:7

▶ Lemma 6. Let pj ∈ C. If pj executed REG.collect(r) with collect number csn then,135

eventually, ∀pi ∈ C, reg ∈ collect_responsesi[csn][k][j],∀pk ∈ Q; where reg is the return of136

pj ’s collect and Q is the set of at least n− f different processes that send (using the Reliable137

broadcast) the same reg to pj during the collect.138

Proof. pj ∈ C ended its collect implies that at least n− f different processes (denoted by139

Q1) send him the same reg (Using the Reliable Broadcast). Hence, all pk ∈ Q1 had performe140

Line 14 or 20 (R_broadcast COLLECT_VALUE(known_csn, reg)). Thus eventually, all141

correct processes (pi ∈ C) will receive this Reliable broadcast (from pk ∈ Q1) and perform142

Line 24143

(collect_responses[csn][k][j].append(reg)) where csn = known_csn[j] which concludes the144

proof. ◀145

▶ Lemma 7. Let n > 3f , pj ∈ C. If pj performs R_broadcast(V, l, r, csnj) (Line 2 of algo146

4) then the predicate valid(j, V, ℓ, r, csn) will eventually be true at pi ∀pi ∈ C and ∀r ≥ 0.147

Proof. To prove that valid() is true is equivalent to prove that A ∧ (F1 ∨ F2 ∨ F3) ∨ F0148

will be True for all pi ∈ C.149

First, we prove A := (regi[r − 1][j] ̸= ⊥) ∀r ≥ 1.150

Because pj ∈ C it ended its write of round r − 1 before performs R_broadcast(V, l, r, csnj).151

Due to the RB-Termination of the Reliable Broadcast, ∀pi ∈ C, pi will eventually receive152

V r−1
j (send by pj during the round r − 1) and pi will execute line 12 then regi[r − 1][j] ̸= ⊥153

becomes True.154

Subsequently, we prove the conditions Fi, 0 ≤ i ≤ 3. The condition F0 is verified during155

the initial round (r = 0), and the condition F 1 is verified only in round r = 1, more precisely156

during the first classification round. F2 and F3 are used if r > 1.157

Case r = 0 : Since pj is correct and use the Reliable Broadcast (Line 2) to send its value158

V in round 0, all correct processes will receive the same value V (due to RB-Uniformity)159

and V ∈ E (Because V = xi ∈ E for all pi ∈ C). Thus F 0 := (r = 0) ∧ (V ∈ E) will become160

True for all pi ∈ C.161

Case r = 1 : We need to prove F1 will eventually be True.162

F1 := (r = 1) ∧ (|V | ≥ n− f) ∧ (∃reg such that Admissible(j, reg, V ′, csn) = V)163

Let prove that |V | ≥ n− f is True164

Because pj ∈ C it ended its collect of round 0. pj ended its collect of round 0 thus there165

exist at least n− 2f different correct processes (Q) that send the same reg to pj in round166

0 after passing the line 17 i.e ∀pi ∈ Q, |{k|regi[0][k] ̸= ⊥}| ≥ n − f . Thus |V | ≥ n − f167

where, V = ∪{v, (v, 0) ∈ reg}.168

Let prove (∃reg such that Admissible(j, reg, V ′, csn) = V) will eventually be True at169

every correct processes pi.170

Since pj is correct and ended its collect of round 0, it’s clear that pj had received via the171

reliable broadcast the same reg from at least n− f different processes. Thus every correct172

process will eventually (due to the reliable broadcast) receive the same reg and performs173

the line 24 (append reg to its collect_responses[csnj][−][j]).(Each correct process can174

compute the Admissible condition easly) This conclude the proof.175

Case r > 1 : We need to prove that F 2∨F 3 becomes True for all pi ∈ C if pj is a correct176

process.177

We give the proof of F2 first178

F2 := (r > 1) ∧
(

l = l′ − f
2r

)
∧ (V = V ′)∧179

(∃reg such that |Admissible(j, reg, V ′, csn)| ≤ l′).180

CVIT 2016

23:8 Efficient Asynchronous Byzantine Lattice Agreement with Optimal Resilience

Let pj ∈ C executing R_broadcast(V, l, r, csnj), (r > 1). It’s clear that pj ended the181

rounds r′ < r in particular round r − 1 collect operations.182

If pj has executed the ligne 9 of the classifier, then it has execute the ligne 8 (of algo 2)183

thus (l = l′ − f
2r) = True and V = V ′.184

Due to the termination of this collect (collect of round r − 1), there exist at least n− f185

processes that send the same reg to pj such that |
⋃
{vk | (vk, ℓ′) ∈ reg}| ≤ l′ (Line 4186

of the classifier Algo 2). Since at least n− f processes execute Lines 14 or 20 (of Algo187

3), every correct process will eventually (due to the reliable broadcast) receive the same188

reg and performs the line 24 (append reg to its collect_responses[csnj][−][j]). Thus189

|Admissible(j, reg, V ′, csn)| ≤ l′ for all pi ∈ C. This ends the proof for F2.190

Proof for F3191

F3 := (r > 1) ∧ (l = l′ + f
2r) ∧ (|V | > l′)∧ (∃reg such that X(j, reg, V ′, csn) = V).192

Let pj ∈ C executing R_broadcast(V, l, r, csnj), (r > 1). It’s clear that pj ended the193

rounds r′ < r in particular round r − 1 collect operations.194

If pj has execute the ligne 7 of the classifier, then it has execute the ligne 6 (of algo 2)195

thus (l = l′ + f
2r) = True. In addition to that, Lines 4 and 6 (of the classifier, algo 2)196

and lemma 5 implies that |V | > l.197

Due to the termination of the last collect of the round r − 1, there exist at least n− f198

processes that send the same reg to pj such that |
⋃
{vk | (vk, ℓ′) ∈ reg}| > l′ (Line 4 of the199

classifier Algo 2). Since pi ∈ C, by lemma 4 and lemma 6, Commitable(j, reg, V ′, csn) =200

True at every correct process pi. More than that, V = ∪{v, (v, l′) ∈ reg} thus201

”∃reg such that Admissible(j, reg, V ′, csn) = V ” will becomes True where (V ′, l′) =202

regi[r][j].203

◀204

▶ Lemma 8. (Write termination) Let n > 3f(Due to the Reliable Broadcast). If pi is correct205

and invokes REG[i].write(), its invocation terminates.206

Proof. Let pi ∈ C performs REG[i].write(−,−, r). Due to the RB-termination property of207

the underlying reliable broadcast abstraction invoked by pi at line 2, each correct process pj208

R-delivers the message write(−,−, r,−). By lemma 7, the predicate valid(−,−,−, r,−) will209

eventually be True for pj and pj sends the message WRITE_DONE(r) to pi (line 13). As210

there are at least n− f correct processes, it follows that pi cannot remain blocked forever at211

line 3, and the write invocation terminates. ◀212

▶ Lemma 9. (Collect termination) Let n > 3f . If pj is correct and invokes REG.collect(),213

its invocation terminates.214

Proof. The proof is by contradiction. Let us assume that a correct process pj invokes215

REG.collect(−) and this invocation never terminates. This means that the predicate216

associated with the wait statement of line 8 remains false forever, namely, ∄reg such that217

the message COLLECT_VALUE(known_csn, reg) is received from at least n− f different218

processes with the correct csn.219

As pj is correct, it broadcasts the request message COLLECT(sn, r) where sn = csnj220

(line 7), and this message is received by all correct processes. Moreover, sn is the greatest221

sequence number ever used by pj to collect, and, due to the contradiction assumption, csnj222

keeps forever the value sn.223

When a correct process pk receives the message COLLECT(sn, r) from pj , the predicate224

known_csnk[j] < sn is satisfied (line 18). This is because sn is greater than all previous225

sequence numbers used by pj to collect before. It follows that pk updates known_csnk[j] to226

J. Open Access and J. R. Public 23:9

sn = csnj , and broadcast COLLECT_VALUE(known_csnk, regk[rj]) (in particularly send227

to pj)(lines19-20). Moreover, as the collect by pj never terminates, known_csnk[j] remains228

forever equal to sn = csnj .229

As the predicate of line 8 remains forever false at pj , and pj receives at least (n − f)230

messages COLLECT(known_csn, reg) with known_csn[j] = csn (one from each correct pro-231

cess), it follows that pj receives at least two messages COLLECT_VALUE(known_csn, reg)232

and COLLECT_VALUE(known_csn′, reg′) such that known_csn[j] = known_csn′[j] and233

reg ̸= reg′.234

Due to the RB-uniformity property of the underlying broadcast abstraction, it follows235

that all the correct processes r-delivers the same write() messages from correct or byz-236

antine processes. Let pk be a correct process. It follows directly from the code of the237

algorithm that, each time pk adds a value to regk[r][i] (line 12), it broadcasts a mes-238

sage COLLECT_VALUE(−, regk[r]) (line 14). It follows (by the write termination) that239

there is a finite time after which pj has received the very same reg contained in message240

COLLECT_VALUE(known_csn, reg) from at least n − f different processes (with the241

correct known_csn[j]). The predicate of line 8 becomes then satisfied. This contradicts the242

initial assumption, and the lemma follows.243

◀244

For lemma 10 to lemma 15, let G be a group at round r ≥ 1 with label ℓ. Let L and R245

be two nonnegative integers such that L < ℓ ≤ R. If L < |V r
i | ≤ R for each correct process246

pi ∈ G, and |Ur
ℓ | ≤ R247

▶ Lemma 10. For each correct process pi ∈ master(G) and pj ∈ slave(G), ℓ < |V r+1
i | ≤ R248

and L < |V r+1
j | ≤ ℓ.249

Proof. Immediate from the classifier procedure. ◀250

▶ Property 4.2. Suppose that process pi (possibly Byzantine) commit(definition 2) a write251

message (Vi, s(l, r), r + 1,−). Then at least n − f different processes known Vi before p′
is252

collect at round r.253

Proof. Otherwise ∄n−f different processes s.t the condition Commitable() of valid(i, Vi, l, r, csn)254

becomes True at round r + 1. ◀255

▶ Lemma 11. |Ur+1
s(ℓ,r)| ≤ ℓ256

Proof. Consider group s(l, r) at round r + 1. We know that this group must be the slave257

group of group l at round r. Let P denote the set of processes that can commit a write258

message at round r + 1 with label s(l, r). For each process pi ∈ P , let (Vi, s(l, r), r + 1,−)259

denote the message that is committed by process pi. Then, U
s(l,r)
r+1 =

⋃
{Vi | pi ∈ P}. Let260

denote by pj ∈ P , the last process that received at least n− f write done (line 3 of Algo 3).261

Let call by extract_j, the result of pj collect (line 3 of algo 2). It’s clear that U
s(l,r)
r+1 ⊆262

extract_j. Otherwise this implies that ∃pk ∈ P s.t Vk /∈ reg_l (where reg_l is the result of263

line 8 of algo 3, sent by at least n− f different processes.) By property 4.2 we not that at264

least |K1| different processes known Vk. Let denote by K2 the set of process that known Vj ;265

|K1| ≥ n− f and |K2| ≥ n− f . Hence there exist at least one correct process that intersect266

K1 and K2 since n > 3f .267

Due to the fact that there exist a correct process ph ∈ K2, it’s clear that |extract_j| ≤ l268

thus |Us(l,r)
r+1 | ≤ l. ◀269

▶ Lemma 12. |Ur+1
m(ℓ,r)| ≤ R270

CVIT 2016

23:10 Efficient Asynchronous Byzantine Lattice Agreement with Optimal Resilience

Proof. The value set that can be commit by each correct process for group m(ℓ, r) is the271

union of values committed (reliably broadcast and valid) by processes in group ℓ at round r.272

Thus, Ur+1
m(ℓ,r) ⊆ Ur

ℓ =⇒ |Ur+1
m(ℓ,r)| ≤ |U

r
ℓ | ≤ R. ◀273

▶ Lemma 13. | ∪ {V r+1
i | pi ∈ slave(G) ∩ C}| ≤ ℓ274

Proof. Implied by lemma 11 ◀275

▶ Lemma 14. | ∪ {V r+1
i | pi ∈ master(G) ∩ C}| ≤ R276

Proof. Implied by lemma 12 ◀277

▶ Lemma 15. For each correct process pj ∈ master(G), Ur+1
s(ℓ,r) ⊆ V r+1

j278

Proof. Let pi ∈ slave(G) and pj ∈ master(G). We know that there exist a set Qi(|Qi| ≥ n−f)279

of processes that participated in the write of process pi at round r. Let Qj be the set of the280

first n− f processes that participated in the second collect of pj .281

Since pi is a slave at round r, it must completes its write before the second collect of pj282

(otherwise pi ∈ master(G)). This implies that V r+1
i = V r

i is known by all pk ∈ Qj before the283

second collect of pj is completed. Therefore, there exists at least one correct process in Qi∩Qj284

since n > 3f . Consequently, V r
i will be included in the reg (COLLECT_VALUE(T, reg))285

returned by process in Qj (otherwise the collect does not terminate - impossible by lemma286

9). Hence, V r+1
j = V r

j ⊆ V r+1
i .We thus conclude that Ur+1

s(ℓ,r) ⊆ V r+1
j . ◀287

▶ Lemma 16. For any correct process pi and round r, V r
i ⊆ V r+1

i .288

Proof. A slave process keeps its value set unchanged and a master process updates its value289

set to be the set values which contains its own value set. ◀290

▶ Lemma 17. Let G be a group of processes at round r ≥ 1 with label ℓ. Then291

(1) for each correct process i ∈ G, ℓ− f
2r ≤ |V r

i | ≤ ℓ + f
2r292

(2) |Ur
ℓ | ≤ ℓ + f

2r293

Proof. By induction on round number r and apply lemma 12, 11 and 10 ◀294

▶ Lemma 18. Let pi and pj be two correct processes that are in the same group G with label295

ℓ at the beginning of round log f + 1. Then V log f+1
i and V log f+1

j are equal.296

Proof. Let G′ be the parent of G with label ℓ′. Assume without loss of generality that297

G = M(G′). The proof for the case G = S(G′) follows in the same manner. Since G′ is a298

group at round log f , by Lemma 17, we have:299

(1) for each correct process p ∈ G′, ℓ′ − 1 < |V log f
p | ≤ ℓ′ + 1, and300

(2) |U log f
ℓ′ | ≤ ℓ′ + 1301

Since pi ∈ G′ and pj ∈ G′, (1) and (2) hold for both process pi and pj . By the assumption302

that G = M(G′), process pi and pj execute the Classifier procedure with label ℓ′ and are303

both classified as master. Let L = ℓ′− 1 and R = ℓ′ + 1, then by applying Lemma 10 we have304

ℓ′ < |V log f+1
i | ≤ ℓ′ + 1 and ℓ′ < |V log f+1

j | ≤ ℓ′ + 1, thus |V log f+1
i | = |V log f+1

j | = ℓ′ + 1. By305

Lemma 14, we have | ∪ {V log f+1
i , V log f+1

j }| ≤ ℓ′ + 1. Thus, V log f+1
i = V log f+1

j . Therefore,306

V r
i and V r

j are equal at the beginning of round log f + 1. ◀307

▶ Lemma 19. (Comparability) For any two correct process pi and pj , yi and yj are compar-308

able.309

J. Open Access and J. R. Public 23:11

Proof. If process pi and j are in the same group at the beginning of round log f + 1, then310

by Lemma 18, yi = yj . Otherwise, let G be the last group that both pi and pj belong to.311

Suppose G is a group with label ℓ at round r. Suppose i ∈ slave(G) and j ∈ master(G)312

without loss of generality. Then, V log f+1
i ⊆ Ur+1

s(ℓ,r) ⊆ V r+1
j ⊆ V log f+1

j , by Lemma 15 ◀313

4.3 Message Complexity314

Messages are exchange only in the algorithm 3. A write operation costs O(n2) overall due to315

R_broadcast. There are at most n writes per round, resulting in O(n3) messages per round.316

Another costly line is line 14, which costs O(n3) messages per round per process, totaling317

O(n4) globally per round. A collect operation costs at most O(n2) per process and is called at318

most twice per round. In summary, the total number of messages is O(n4 + n3 + n2) = O(n3)319

messages per round. Hence, our algorithm exchanges at O(n4 log f) messages i.e O(n3 log f)320

messages per process.321

5 Conclusion322

.....323

6 Draft324

References325

1 Hagit Attiya, Maurice Herlihy, and Ophir Rachman. Atomic snapshots using lattice agreement.326

Distrib Comput, 8(3):121–132, March 1995. doi:10.1007/BF02242714.327

2 Giuseppe Antonio Di Luna, Emmanuelle Anceaume, and Leonardo Querzoni. Byzantine328

generalized lattice agreement. In 2020 IEEE International Parallel and Distributed Processing329

Symposium (IPDPS), pages 674–683. IEEE, 2020.330

3 Jose M. Faleiro, Sriram Rajamani, Kaushik Rajan, G. Ramalingam, and Kapil Vaswani.331

Generalized lattice agreement. In Proceedings of the 2012 ACM symposium on Principles332

of distributed computing, pages 125–134, Madeira Portugal, July 2012. ACM. URL: https:333

//dl.acm.org/doi/10.1145/2332432.2332458, doi:10.1145/2332432.2332458.334

4 Damien Imbs, Sergio Rajsbaum, Michel Raynal, and Julien Stainer. Read/write shared memory335

abstraction on top of asynchronous Byzantine message-passing systems. Journal of Parallel336

and Distributed Computing, 93-94:1–9, July 2016. URL: https://www.sciencedirect.com/337

science/article/pii/S074373151630003X, doi:10.1016/j.jpdc.2016.03.012.338

5 Xiong Zheng and Vijay Garg. Byzantine lattice agreement in synchronous message passing339

systems. In 34th International Symposium on Distributed Computing (DISC 2020). Schloss-340

Dagstuhl-Leibniz Zentrum für Informatik, 2020.341

6 Xiong Zheng and Vijay Garg. Byzantine Lattice Agreement in Asynchronous Systems.342

In DROPS-IDN/v2/document/10.4230/LIPIcs.OPODIS.2020.4. Schloss Dagstuhl – Leibniz-343

Zentrum für Informatik, 2021. URL: https://drops.dagstuhl.de/entities/document/10.344

4230/LIPIcs.OPODIS.2020.4, doi:10.4230/LIPIcs.OPODIS.2020.4.345

7 Xiong Zheng, Vijay K. Garg, and John Kaippallimalil. Linearizable Replicated State Machines346

with Lattice Agreement, October 2018. arXiv:1810.05871 [cs]. URL: http://arxiv.org/abs/347

1810.05871, doi:10.48550/arXiv.1810.05871.348

8 Xiong Zheng, Changyong Hu, and Vijay K. Garg. Lattice Agreement in Message Passing349

Systems. In DROPS-IDN/v2/document/10.4230/LIPIcs.DISC.2018.41. Schloss Dagstuhl350

– Leibniz-Zentrum für Informatik, 2018. URL: https://drops.dagstuhl.de/entities/351

document/10.4230/LIPIcs.DISC.2018.41, doi:10.4230/LIPIcs.DISC.2018.41.352

CVIT 2016

https://doi.org/10.1007/BF02242714
https://dl.acm.org/doi/10.1145/2332432.2332458
https://dl.acm.org/doi/10.1145/2332432.2332458
https://dl.acm.org/doi/10.1145/2332432.2332458
https://doi.org/10.1145/2332432.2332458
https://www.sciencedirect.com/science/article/pii/S074373151630003X
https://www.sciencedirect.com/science/article/pii/S074373151630003X
https://www.sciencedirect.com/science/article/pii/S074373151630003X
https://doi.org/10.1016/j.jpdc.2016.03.012
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2020.4
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2020.4
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2020.4
https://doi.org/10.4230/LIPIcs.OPODIS.2020.4
http://arxiv.org/abs/1810.05871
http://arxiv.org/abs/1810.05871
http://arxiv.org/abs/1810.05871
https://doi.org/10.48550/arXiv.1810.05871
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2018.41
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2018.41
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2018.41
https://doi.org/10.4230/LIPIcs.DISC.2018.41

	1 Introduction
	2 Related work
	3 Model and Definitions
	4 The Byzantine Lattice Agreement Problem
	4.1 The main algorithm
	4.1.1 The classifier procedure
	4.1.2 SWMR for BLA
	4.1.3 The valid condition

	4.2 Proof of the algorithm
	4.3 Message Complexity

	5 Conclusion
	6 Draft

